Iklan

Iklan

Pertanyaan

N i l ai se m u a x se hin gg a ma t r ik s [ x 2 − 1 ​ x ​ 1 2 ​ ] m e m p u n y ai in v ers a d a l ah ....

  1. x not equal to negative 4 over 3 space d a n space x not equal to 4 over 3

  2. x not equal to negative square root of 4 over 3 end root space d a n space x not equal to square root of 4 over 3 end root

  3. square root of 4 over 3 end root less than x less or equal than negative 1 space a t a u space 1 less or equal than x less than square root of 4 over 3 end root

  4. negative square root of 4 over 3 end root less than x less or equal than negative 1 space a t a u space 1 less than x less than space square root of 4 over 3 end root

  5. space x less than negative square root of 4 over 3 end root space a t a u space minus square root of 4 over 3 end root less than x less or equal than negative 1 space a t a u space 1 less or equal than x less than space x square root of 4 over 3 end root space a t a u space x greater than square root of 4 over 3 end root

Iklan

A. Acfreelance

Master Teacher

Jawaban terverifikasi

Iklan

Pembahasan

Penyelesaian: Suatu matriks mempunyai invers berarti determinan matriks

Penyelesaian:

Suatu matriks mempunyai invers berarti determinan matriks not equal to 0

open vertical bar table row cell square root of x squared minus 1 end root end cell 1 row x 2 end table close vertical bar not equal to 0  2 square root of x squared minus 1 end root minus x not equal to 0  2 square root of x squared minus 1 end root not equal to x  4 left parenthesis x squared minus 1 right parenthesis not equal to x squared  4 x squared minus 4 not equal to x squared left right double arrow 3 x squared not equal to 4 left right double arrow x squared not equal to 4 over 3 left right double arrow x not equal to plus-or-minus square root of 4 over 3 end root  s y a r a t  space space space space space space space space space space space x squared minus 1 greater or equal than 0  left parenthesis x minus 1 right parenthesis left parenthesis x plus 1 right parenthesis greater or equal than 0

x less or equal than negative 1 space a t a u space x greater or equal than 1    N i l a i space x space y a n g space m e m e n u h i space a d a l a h colon space  space x less than negative square root of 4 over 3 end root space a t a u space minus square root of 4 over 3 end root less than x less or equal than negative 1 space a t a u space 1 less or equal than x less than space x square root of 4 over 3 end root space a t a u space x greater than square root of 4 over 3 end root

Latihan Bab

Konsep Kilat

Pengertian Matriks

Operasi Hitung Matriks

Invers Matriks

Perdalam pemahamanmu bersama Master Teacher
di sesi Live Teaching, GRATIS!

Iklan

Iklan

Pertanyaan serupa

Jika Matriks K= , L= , dan M=2KL, invers matriks M adalah...

Jawaban terverifikasi

Iklan

Iklan

RUANGGURU HQ

Jl. Dr. Saharjo No.161, Manggarai Selatan, Tebet, Kota Jakarta Selatan, Daerah Khusus Ibukota Jakarta 12860

Coba GRATIS Aplikasi Roboguru

Coba GRATIS Aplikasi Ruangguru

Download di Google PlayDownload di AppstoreDownload di App Gallery

Produk Ruangguru

Fitur Roboguru

Topik Roboguru

Hubungi Kami

Ruangguru WhatsApp

081578200000

Email info@ruangguru.com

info@ruangguru.com

Contact 02140008000

02140008000

Ikuti Kami

©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia